Phases of a Machine Learning Project
Phase | Useful Tools/Libraries |
---|---|
Data Acquisition | SQL, pandas |
Exploratory Data Analysis | numpy, pandas, duckdb |
Data Annotation | doccano |
Data Visualization | matplotlib, seaborn, plotly |
Data Cleaning / Featurization | numpy, pandas |
Model Development | scikit-learn, xgboost, lightgbm, pytorch, tensorflow, wandb (experiment tracking) |
Error Analysis | scikit-learn, matplotlib |
Hyperparameter Tuning | optuna, ray |
Model Evaluation | scikit-learn, matplotlib |
Model Explainability | shap, lime |
Model Demo | streamtlit, gradio |