Phases of a Machine Learning Project
| Phase | Useful Tools/Libraries |
|---|---|
| Data Acquisition | SQL, pandas |
| Exploratory Data Analysis | numpy, pandas, duckdb |
| Data Annotation | doccano |
| Data Visualization | matplotlib, seaborn, plotly |
| Data Cleaning / Featurization | numpy, pandas |
| Model Development | scikit-learn, xgboost, lightgbm, pytorch, tensorflow, wandb (experiment tracking) |
| Error Analysis | scikit-learn, matplotlib |
| Hyperparameter Tuning | optuna, ray |
| Model Evaluation | scikit-learn, matplotlib |
| Model Explainability | shap, lime |
| Model Demo | streamtlit, gradio |